Dynamic On-Demand Analysis Service: DODAS

Marica Antonacci!, Tommaso Boccali?, Andrea Ceccanti?®, Giacinto Donvito', Cristina Duma?3, Davide Salomoni?,

Daniele Spiga*
TINFN-Bari, 2 INFN-Pisa, 3 INFN-CNAF, ¢ INFN-Perugia

Introduction

The Compact Muon Solenoid (CMS) is one of the two general purpose experiments at the Large Hadron Collider (LHC) at CERN in Geneva. CMS relies on the distributed
computing capacities of the WLCG in order to process and analyze the collision data taken during LHC live time. Solutions having the potential to provide additional (e.g donated,
hired, temporary, etc...) computing capacity to the LHC experiments and hence to CMS are of extreme interest.

As shown below, the expectation for the next decade predicts an increase in the computing needs which will be difficult to support with standard Grid facilities.

I _ Resus

DODAS, an enabler of on demand dynamic clusters executing HTCondor batch

3 2 ] systems, has been developed.
[CPU' x60 from 2016 | The service has been integrated with CMS computing infrastructure. This
demonstrates how DODAS can dynamically extend an already existing

HTCondor global queue.
Objectives The CMS integration emphasizes how such mechanism represents a possible
solution to harvest geographically distributed cloud resources and to serve them

as a single batch system: a possible approach to the opportunistic computing.

I N

To develop a solution for generating an on-demand, container based HTCondor
cluster, possibly seamlessly integrating an existing HTCondor pool

By simplifying and automating the process of creating, managing and accessing a pool
of computing resources the project aims to improve
1. Sites management:
a. Asimple solution for elastic site extensions on “opportunistic’/stable resources
b. Generation of a ephemeral WLCG-Type facility on demand, for data
2. Users experience:
a. Afriendly procedure to dynamically instantiate a spot ‘analysis resource center’
3. Experiment-Collaboration resources:
a. Acomprehensive approach to opportunistic computing.
a. Access and orchestrate multiple e.g. campus centers, harvesting all the
free CPU cycles without major deployment effort

Architecture

The architecture of DODAS is composed by multiple INDIGO- CMS Physicists

DataCloud components as detailed below.

The four pillars are:

Cluster Management:

Mesos clusters a solution for the execution of docker containers
for all the services required by a regular CMS site (Worker Node,
HTCondor Schedd and squids, X509 cache).

Marathon Application Framework that guarantees the dynamic
scaling up and down of resources, a key point. ' R 7

AuthN/Z & Credential Management: \ o v H‘g:::r'

INDIGO Identity Access Management (IAM) service responsible
for AuthN/Z to the cluster generation.

Token Translation Service (TTS) enables the conversion of IAM
tokens in to a X.509 certificates. A key to implement a trusted
condor_startd Auto Registration.

Data Management:

Dynafed & FTS is the approach currently followed by the project.
We will investigate Oneclient (from Onedata) as a tool allowing
to mount remote Posix file-system.

Automation:

= TOSCA templates, meant to be managed by INDIGO PaaS

Orchestrator, allow the automation of the overall setup.

CMS
Distributed Storages

= Asingle YAML file describes the complex setup of all required The schema represents an high level view of the end user interactions with DODAS. Green colored
services and dependencies

boxes represent the major INDIGO-DataCloud adopted components.

The figure refers to the HTCondor based scenario, where a user, upon authentication with IAM,
submits a properly configured TOSCA template to the PaaS Orchestrator. The latter takes care to
interact with laaS provider, possibly through Infrastructure Manager. At the end a Apache Mesos
cluster is deployed and the worker nodes (Docker applications) auto register with Global Pool to
execute CMS Analysis Jobs.

CVMFS is installed on host slave machines, while squid proxy and TTS Cache are containerized.

Automation

'ENVIRONMENT |

Condor Startd

! Ansible excerpts of
CMS experiment
specific configurations

The above schema represents the major components of the TTSCache.

The incoming token passed as TOSCA parameter, is propagated to downstream services
till the Docker applications, through Marathon.

TTSCache performs a token exchange, which is a controlled way of obtaining the ability of
acting on behalf of a user for a possibly long amount of time, and the exchanged token is
used to retrieve a X.509 certificate.

The latter is used to perform a trusted auto-registration with HTCondor Global Pool.




