
HTCondor Essentials
31.10.2017

Index

Login

How to submit a job in the HTCondor pool

Submit description file

Why the -name<schedd> option?

Submitting a job

Checking status of submitted jobs

Getting id and other info about a job

Displaying running jobs

Displaying only your jobs

Displaying jobs on hold

Displaying a specific job

Why a job won't complete its execution?

Checking output of a running job

Managing a job

Removing a job from the queue

Putting a job on hold

Releasing a job

Changing the priority of the jobs

Checking pool status

Displaying slots running your jobs

Submit description file

Mandatory commands

Really useful commands

Adding requirements to the machines

which will execute the job

About Requirements and Rank

More Job Examples

1. Multiple submission

Submit description file

2. More about multiple submission

Submit description file

3. Working with files

Submit description file

4. Multiple submission and files

Submit description file

Login
To login use ssh protocol through the following command:

> ssh -i <path_private_key> <username>@frontend.recas.ba.infn.it

The login occurs in the user home:
> pwd
/lustrehome/<username>

Top

How to submit a job in the HTCondor pool
Suppose we want to run the echo command to print on screen the string “Hello World!”.

To submit a job in HTCondor we need a submit description file, a text file which will describe the job (path

of executable, requirements, etc…).

A further explanation about submit description file and its commands is described later.

Submit description file

This is a comment in the submit file
file name : submit_echo
universe describes an execution environment. Set universe to vanilla
universe = vanilla
Path of the executable (it can be a system command, your own application, a
script, etc...)
executable = /bin/echo
The argument to pass to the executable
arguments = "Hello World!"
The output of the remote machine running the job will be printed on
echo.out

output = echo.out
error = echo.error
log = echo.log
request_cpus = 1
rank = Memory
queue

Note: if you don't specify request_cpus, request_disk, request_memory in the submit file, the job

will run on a default amount of cpus (1), memory and disk space.

To submit the job use condor_submit passing as an argument the name of the submit file:
> condor_submit submit_echo -name ettore

Top

Why the -name<schedd> option?
In order to submit HTCondor job-related commands you need to specify a schedd, hence the

-name<schedd> option in the command submission above.

All commands described in this document need the -name ettore option to work except

condor_status.
Top

Submitting a job
condor_submit is the program for submitting jobs for execution under HTCondor.

> condor_submit <path_submit_file>

> condor_submit <path_submit_file> -interactive

Indicates that the user wants to run an interactive shell on the remote machine that execute the

job.

The submit file should look like the following examples:

Submit description file example in order to execute the mathematica application with 1GB of RAM as

resource allocation policy:

executable = mathematica

universe = vanilla

input = test.data

output = loop.out

error = loop.error

log = loop.log

request_memory = 1 GB

initialdir = run_1

queue

Submit description file example in order to execute the mathematica application with 24GB of RAM and 8

cores as resource allocation policy:

executable = mathematica

universe = vanilla

input = test.data

output = loop.out

error = loop.error

log = loop.log

request_memory = 24 GB

request_cpus = 8

initialdir = run_1

queue

Resources allocation are managed in a hard way. By configuration HTCondor will not allow the job to
exceed the requested resources.

Requesting more than one core could lead the job to high waiting time in queue.

Top

Checking status of submitted jobs

Getting id and other info about a job

> condor_q
Displays information about jobs in the HTCondor job queue. For every job is shown:

● id: id of the condor job
● status: I – idle (waiting for a machine to execute on), R – running, H – on hold,

S – suspended, C – completed, X – removed, < – transferring input,
> – transferring output

● other info (like runtime, size, priority (PRI), name of the executable (CMD))
Top

Displaying running jobs

> condor_q -run

Displaying only your jobs

> condor_q -constraint 'OWNER == "<username>"'

Displaying jobs on hold

> condor_q -hold

Displaying a specific job

> condor_q <job_id>
Top

Why a job won't complete its execution?

> condor_q -better-analyze <job_id>
Performs a detailed matchmaking analysis to determine how many slots are available to run the
requested job.

Top

Checking output of a running job

> condor_tail <job_id>
Displays the last lines of stdout of a running job

Top

Managing a job

Removing a job from the queue

A job can be removed from the queue at any time by using the condor_rm command.

> condor_rm <job_id>
Top

Putting a job on hold

A job can be put on hold state with condor_hold command.

When a job is put on hold, it will not be scheduled to run until is released. If the job is running when

condor_hold is invoked, it will be vacated from the machine it was running on.

> condor_hold <job_id>
Top

Releasing a job

A job can be released with condor_release command.

When a job is released from hold state, it is returned to idle state, and will be scheduled to run when

possible. Only jobs that are on hold can be released.

> condor_release <job_id>
Top

Changing the priority of the jobs

The priority of jobs can be changed with condor_prio command.

The priority of a job can be any integer, with higher numbers corresponding to greater priority. For

adjustment of the current priority, + value increases the priority by the amount given with value. - value

decreases the priority by the amount given with value.

> condor_prio -p <+|-value> <job_id>

Top

Checking pool status
condor_status is a versatile tool that may be used to monitor and query the HTCondor pool.

Note: condor_status command doesn't need -name<schedd> option to work.

> condor_status -available

Shows available slots

> condor_status -available -autoformat Name Memory Cpus Disk
Shows name, memory, cpus, disk space of available slots

> condor_status -run
Shows slots which are currently running jobs

Top

Displaying slots running your jobs

> condor_status -constraint 'RemoteUser == "<username>@ReCaSCluster"'
Top

SSH to a running job
To create an ssh session to a running job, type

> condor_ssh_to_job -name <schedd> <job_id>

replacing <schedd> with the name of the schedd to which the job has been submitted (e.g. ettore), and

<job_id> with the job id. Notice that you must be the owner of the job.

The remote session runs with the same user as the running job, in the folder from which it has been

launched. A PID, associated to the job, is provided. To leave the session, type logout.
More options can be found through

> condor_ssh_to_job -help

Further information and some examples on how to use it can be found at this link.

Top

http://research.cs.wisc.edu/htcondor/manual/current/condor_ssh_to_job.html

Submit description file
A submit description file is a text file which contains everything HTCondor needs to know about the job to

be submitted such as the name of the executable to run, the initial working directory, command-line

arguments, etc…

Mandatory commands

universe = vanilla
universe defines an HTCondor execution envirorment. Set this command to vanilla.

executable = <path_name>
Path where the executable is located.

queue

This command will send the job to the queue, so it should be the last command in the submit

description file.

Top

Really useful commands

input = <path_name>
This file should contains the keyboard input the program requires (this file is basically stdin). End

of line character is equivalent to press ENTER on the keyboard.

output = <path_name>
This file contains the output the program writes on the remote machine (this file is basically

stdout).
error = <path_name>

This file contains any error messages the program would normally write to the screen (this file is
basically stderr).

log = <path_name>
This file contains info about what happens while the job is running. If this file is specified HTCondor

will add a log entry for several event like when the job starts running, migrates to another machine,

the job completes.

arguments = <arguments list>
List of arguments to be supplied to the executable as part of the command line.
In HTCondor there are two possible formats to specify arguments, known as the old syntax and the
new syntax. You can find more details and examples here.
If you type the following command:
> condor_q <job_id> -long -autoformat args arguments
depending on which sintax you used, it will be prompted on screen args if you used the old sintax,
arguments if you used the new sintax.

priority = <+|- value>

Assign a priority to the job. The highest the value, the greater the priority.
Top

http://research.cs.wisc.edu/htcondor/manual/current/condor_submit.html#man-condor-submit-arguments

Adding requirements to the machines which will execute the job

request_cpus = <num_cpus>
Requested amount of CPUs to execute the job. If not specified, the number of CPUs for the job is 1.

request_disk = <kilobytes>
The requested amount of disk space in KB requested for this job. If not specified, the job will run on

a default amount of disk space.

request_memory = <megabytes>
The requested amount of memory in MB requested to run the job. If non specified, the job will run

on a default amount of memory.

requirements = <ClassAd expression>
Run the job on the machines that match the ClassAd expression.

rank = <ClassAd expression>
The rank command will assign an order to the machines based on the ClassAd expression and will

run the job on the machine with the highest rank. the rank command and requirements

commands described above can coexist in the same file: while the requirements commands will

exclude a machine which doesn't meet the user criteria from running the job, the rank command

will run the job on the best machine, according to the user criteria, currently available.

Top

About requirements and rank
Both requirements and rank need to be valid ClassAd expression. In a ClassAd expression attribute

names are case insensitive while string values are always case sensitive. So the following ClassAd

expressions are valid:

Requirements = OpSys == “LINUX” && Arch == “INTEL”
requirements = opsys == “LINUX” && arch == “INTEL”

while the following expression is not:

requirements = opsys == “linux” && arch == “intel”
Top

More Job Examples

1. Multiple submission

The following submit file executes 5 istances of the program sleep; for every run the process id related to

the single execution is supplied as argument:

Submit description file

universe = vanilla
executable = /bin/sleep
arguments = $(Process)
sleep = sleep.log
queue 5

Note: The job id in HTCondor is defined as Cluster.Process. If you submit more than one job from the

same submit file each job will share the same cluster id.

Top

2. More about multiple submission

The following submit file executes 3 instances of the program echo and for every run a different string is

printed on stdout

Submit description file

universe = vanilla
executable = /bin/echo
output = job_$(Cluster).$(Process).out
error = job_$(Cluster).$(Process).err
log = job_$(Cluster).log

arguments = "String 1"
queue

arguments = "String 2"
queue

arguments = "String 3"
queue

For the x run:

● stdout will be sent to job_idcluster.x.out
● stderr will be sent to job_idcluster.x.err

Top

3. Working with files

Because the pool uses a shared file system you don’t have to specify in the submit file the transfer of file to

and from the remote machine that execute the job. All you need to do is to make sure that the paths of the

files (either absolute or relative) the program needs are valid.

Suppose we want to run a simple bash script that prints on screen the content of a text file:

#!/bin/sh

while read line; do
 echo "$line"
done < file.txt

Submit description file

universe = vanilla
executable = script.sh
log = script.log
output = script.out
queue

Top

4. Multiple submission and files

Suppose we want to run 2 instances of an executable named myprogram that needs input from

stdin, a text file and one argument to work; once its execution is complete, it yields an output file

named out.txt
Using the command initialdir allows to specify a different base directory for each job avoiding in this

example the overwriting of the output file out.txt

Submit description file

universe = vanilla
executable = myprogram
log = myprogram.log
input = myprogram.in
output = myprogram.out
error = myprogram.err
initialdir = run_1
arguments = a
queue

initialdir = run_2
arguments = w
queue

For the x run:

● stdout(stderr) will be sent to run_x/myprogram.out(run_x/myprogram.err)
● stdin will be read from run_x/myprogram.in

Top

